76 research outputs found

    Experimental and Theoretical Progress of Linear Collider Final Focus Design and ATF2 Facility

    Get PDF
    In this brief overview we will reflect on the process of the design of the linear collider (LC) final focus (FF) optics, and will also describe the theoretical and experimental efforts on design and practical realisation of a prototype of the LC FF optics implemented in the ATF2 facility at KEK, Japan, presently being commissioned and operated

    Novel real-time tumor-contouring method using deep learning to prevent mistracking in X-ray fluoroscopy

    Get PDF
    Robustness to obstacles is the most important factor necessary to achieve accurate tumor tracking without fiducial markers. Some high-density structures, such as bone, are enhanced on X-ray fluoroscopic images, which cause tumor mistracking. Tumor tracking should be performed by controlling “importance recognition”: the understanding that soft-tissue is an important tracking feature and bone structure is unimportant. We propose a new real-time tumor-contouring method that uses deep learning with importance recognition control. The novelty of the proposed method is the combination of the devised random overlay method and supervised deep learning to induce the recognition of structures in tumor contouring as important or unimportant. This method can be used for tumor contouring because it uses deep learning to perform image segmentation. Our results from a simulated fluoroscopy model showed accurate tracking of a low-visibility tumor with an error of approximately 1 mm, even if enhanced bone structure acted as an obstacle. A high similarity of approximately 0.95 on the Jaccard index was observed between the segmented and ground truth tumor regions. A short processing time of 25 ms was achieved. The results of this simulated fluoroscopy model support the feasibility of robust real-time tumor contouring with fluoroscopy. Further studies using clinical fluoroscopy are highly anticipated

    Clinical practice vs. state-of-the-art research and future visions:Report on the 4D treatment planning workshop for particle therapy - Edition 2018 and 2019

    Get PDF
    The 4D Treatment Planning Workshop for Particle Therapy, a workshop dedicated to the treatment of moving targets with scanned particle beams, started in 2009 and since then has been organized annually. The mission of the workshop is to create an informal ground for clinical medical physicists, medical physics researchers and medical doctors interested in the development of the 4D technology, protocols and their translation into clinical practice. The 10th and 11th editions of the workshop took place in Sapporo, Japan in 2018 and Krakow, Poland in 2019, respectively. This review report from the Sapporo and Krakow workshops is structured in two parts, according to the workshop programs. The first part comprises clinicians and physicists review of the status of 4D clinical implementations. Corresponding talks were given by speakers from five centers around the world: Maastro Clinic (The Netherlands), University Medical Center Groningen (The Netherlands), MD Anderson Cancer Center (United States), University of Pennsylvania (United States) and The Proton Beam Therapy Center of Hokkaido University Hospital (Japan). The second part is dedicated to novelties in 4D research, i.e. motion modelling, artificial intelligence and new technologies which are currently being investigated in the radiotherapy field

    Development of multiple regions tracking system to reduce inter and intra-fractional error for proton therapy

    Get PDF
    PTCOG49 - 49th Annual Meeting of the Particle Therapy Co-Operative Group Scientific Meeting, 2010This is to certificate of the Outstanding Poster Award of the 49th Annual Meeting of the Particle Therapy Co-Operative Group, Scientific Meeting, 2010. (Category: Physics, 5/21/2010

    Comparison of adverse effects of proton and X-ray chemoradiotherapy for esophageal cancer using an adaptive dose–volume histogram analysis

    Get PDF
    Cardiopulmonary late toxicity is of concern in concurrent chemoradiotherapy (CCRT) for esophageal cancer. The aim of this study was to examine the benefit of proton beam therapy (PBT) using clinical data and adaptive dose–volume histogram (DVH) analysis. The subjects were 44 patients with esophageal cancer who underwent definitive CCRT using X-rays (n = 19) or protons (n = 25). Experimental recalculation using protons was performed for the patient actually treated with X-rays, and vice versa. Target coverage and dose constraints of normal tissues were conserved. Lung V5–V20, mean lung dose (MLD), and heart V30–V50 were compared for risk organ doses between experimental plans and actual treatment plans. Potential toxicity was estimated using protons in patients actually treated with X-rays, and vice versa. Pulmonary events of Grade ≥2 occurred in 8/44 cases (18%), and cardiac events were seen in 11 cases (25%). Risk organ doses in patients with events of Grade ≥2 were significantly higher than for those with events of Grade ≤1. Risk organ doses were lower in proton plans compared with X-ray plans. All patients suffering toxicity who were treated with X-rays (n = 13) had reduced predicted doses in lung and heart using protons, while doses in all patients treated with protons (n = 24) with toxicity of Grade ≤1 had worsened predicted toxicity with X-rays. Analysis of normal tissue complication probability showed a potential reduction in toxicity by using proton beams. Irradiation dose, volume and adverse effects on the heart and lung can be reduced using protons. Thus, PBT is a promising treatment modality for the management of esophageal cancer

    Registration error of the liver CT using deformable image registration of MIM Maestro and Velocity AI

    Get PDF
    BackgroundUnderstanding the irradiated area and dose correctly is important for the reirradiation of organs that deform after irradiation, such as the liver. We investigated the spatial registration error using the deformable image registration (DIR) software products MIM Maestro (MIM) and Velocity AI (Velocity).MethodsImage registration of pretreatment computed tomography (CT) and posttreatment CT was performed in 24 patients with liver tumors. All the patients received proton beam therapy, and the follow-up period was 4–14 (median: 10) months. We performed DIR of the pretreatment CT and compared it with that of the posttreatment CT by calculating the dislocation of metallic markers (implanted close to the tumors).ResultsThe fiducial registration error was comparable in both products: 0.4–32.9 (9.3 ± 9.9) mm for MIM and 0.5–38.6 (11.0 ± 10.0) mm for Velocity, and correlated with the tumor diameter for MIM (r = 0.69, P = 0.002) and for Velocity (r = 0.68, P = 0.0003). Regarding the enhancement effect, the fiducial registration error was 1.0–24.9 (7.4 ± 7.7) mm for MIM and 0.3–29.6 (8.9 ± 7.2) mm for Velocity, which is shorter than that of plain CT (P = 0.04, for both).ConclusionsThe DIR performance of both MIM and Velocity is comparable with regard to the liver. The fiducial registration error of DIR depends on the tumor diameter. Furthermore, contrast-enhanced CT improves the accuracy of both MIM and Velocity
    corecore